Managing Severe COPD
Much Can Be Done

Severe COPD may be challenging to manage as patients often experience debilitating symptoms that fail to respond completely to disease-specific treatment. Clear communication about the goals of care combined with management of symptoms and comorbidities should enable patients to enjoy a better quality of life.

Chronic obstructive pulmonary disease (COPD) is a common and progressive disease associated with significant morbidity and mortality. Access Economics estimated in 2008 that more than one million Australians had moderate COPD, with a further 150,000 having severe COPD. A careful history and clinical examination may suggest a diagnosis of COPD, but they do not reliably predict airflow obstruction and spirometry is essential to confirm the diagnosis.

IN SUMMARY

- Management of patients with severe COPD is challenging, but with a combination of therapeutic approaches much can be achieved.
- Pulmonary rehabilitation may improve symptoms and quality of life and reduce exacerbations in patients at all stages of disease severity.
- Detecting and managing comorbidities, including cardiac disease, osteoporosis, anxiety and depression, are important in improving patient outcomes.
- Oxygen therapy improves prognosis in patients with chronic hypoxaemia.
- Noninvasive ventilation is useful in managing acute hypercapnic exacerbations of COPD.
- Clear communication focusing on likely disease trajectory, prognosis, goals of care and advance care planning is essential.
- Patients with very severe COPD may require palliative care, ideally provided by their usual care providers, but some patients require specialist palliative care referral.
Panadol® Hot Lemon & Honey

Warms in seconds... Lasts for hours

Each 6 g sachet contains:
1. Paracetamol 600 mg.
2. Ascorbic Acid 40 mg.
3. Phenylephrine Hydrochloride 10 mg.

- Fast-acting relief from your cold and flu symptoms.1,2,4,4
- Effective in relieving blocked nose, headache, fever, sore throat and aches & pain.3,5,6
- Absorbed twice as fast as standard paracetamol tablet.7

TAKE ONE SACHET EVERY 4-6 HOURS.10

10. Panadol Cold and flu Hot Lemon and Honey information.
COPD is defined as severe in spirometric terms when the postbronchodilator forced expiratory volume in 1 second (FEV₁) is less than 40-50% predicted, with very severe disease defined by a postbronchodilator FEV₁ less than 30% predicted. Although the FEV₁ correlates well with prognosis, the degree of airflow obstruction alone may be poorly predictive of symptoms. Guidelines recommend assessing symptom burden (especially the degree of dyspnoea), degree of activity limitation and frequency of exacerbation, along with FEV₁, when determining treatment needs.

This article discusses the management of patients who are severely symptomatic with an FEV₁ at the ‘very severe’ or ‘severe’ end of the COPD spectrum.

MANAGING SYMPTOMS IN SEVERE COPD

Patients with very severe COPD may have symptoms as debilitating as those with advanced cancer. A cardinal feature of very severe COPD is profound dyspnoea. Cough, fatigue, poor social functioning, high rates of depression and anxiety and poor quality of life are also prominent symptoms. Carers of people with very severe COPD also have significant morbidity. Despite intensive treatment, disease-specific symptom relief may be inadequate and many patients receive inadequate palliative care.

Throughout the range of disease severity, treatments for COPD are largely directed at:

• improving symptoms
• preventing deterioration, notably through reducing exacerbations, with their known impact on disease progression and quality of life. Both nonpharmacological and pharmacological therapies have a role.

NONPHARMACOLOGICAL THERAPIES

Smoking cessation
In patients with mild-to-moderate COPD, smoking cessation reduces lung function decline and mortality and improves respiratory symptoms and health-related quality of life. Although similar longterm studies are not available in those with severe COPD, health benefits are likely from smoking cessation at all stages of the disease, and counselling (with additional pharmacotherapy if needed) should be offered to all patients.

Physical activity and pulmonary rehabilitation
Patients with COPD typically reduce their participation in activities that induce breathlessness and fatigue; none more so than those with very severe disease. Continued limitation of daily activities and worsening symptoms (despite reduced activities) induces deconditioning. This results in an ongoing dynamic of symptoms affecting activities, and vice versa, often referred to as the ‘dyspnoea spiral’ or downward cycle of deconditioning with worsening symptoms and further restriction of activity.

Regular physical activity is recommended for all people with COPD, and has been associated with reduced hospital admissions. Pulmonary rehabilitation is an evidence-based, multidisciplinary program involving graded exercise, education, behaviour modification and psychosocial support, typically provided on an outpatient basis, two or three times weekly over six to eight weeks. Pulmonary rehabilitation improves dyspnoea, exercise capacity and health-related quality of life as well as improving symptoms of anxiety and depression and reducing health care utilisation. Although patients may be hesitant to consider exercise when their dyspnoea is severe, support from their primary care physician is key, and even patients with very severe COPD can achieve benefits. Pulmonary rehabilitation programs are generally run through hospital outpatient departments or community health centres.

Vaccination
Influenza vaccination reduces acute exacerbation of COPD, although its effect on health care utilisation and mortality is unclear. Guidelines recommend yearly influenza vaccinations and up-to-date pneumococcal vaccination for all people with COPD.

PHARMACOTHERAPY

Inhaled therapies
Titration of inhaled therapy for COPD is recommended using a stepwise approach to enable evaluation of each additional medication before adding another and to minimise side effects. Treatment should be based on the patient’s symptoms, exacerbation risk and response until, ideally, adequate disease control is achieved. Short-acting beta agonists (SABAs)
or anticholinergics (SAMAs) are effective in providing acute symptom relief, while longer-acting beta agonists (LABAs) or anticholinergics (LAMAs) may improve quality of life and reduce exacerbation frequency. The inflammatory response in COPD is relatively corticosteroid-insensitive. Although inhaled corticosteroids may reduce exacerbation frequency and decline in quality of life when prescribed in combination with LABAs for patients with FEV1 less than 50% predicted and frequent exacerbations (two or more in 12 months), the improvement over LABA alone is of questionable significance. In addition, benefits need to be weighed against the known increased risk of pneumonia with their use. There is some evidence that the combination of a LAMA and LABA is better than either monotherapy. However, evidence for triple therapy (LABA, LAMA and inhaled corticosteroid) is conflicting. It is important to note that using more than one agent from each class does not confer additional benefit and should be avoided, suggesting the need for careful and regular review of patients’ pharmacotherapy.

When changing pharmacotherapy, the clinician should consider treatment response in terms of dyspnoea, functional status, history of exacerbations and patient preference. In an individual with severe COPD, decisions about which therapies to continue will likely be based on various factors, including:

- severity of symptoms
- frequency of exacerbations with or without the need for hospitalisation
- device preference
- adverse effects
- potential long-term benefits
- other comorbidities and their treatments
- cost and minimisation of polypharmacy.

Longer-term therapeutic trials are needed to determine the impact of changing therapies on exacerbations. Inadequate device use is very common in patients with COPD, and many primary care as well as specialty physicians and nurses are inadequately equipped to instruct patients in proper inhaler use. Health professionals should ensure they are capable of instructing patients and caregivers on inhaler use, and review should be repeated at each visit to ensure maintenance of proper technique.

Other therapies

Unfortunately, patients with severe COPD may continue to experience significant symptoms despite the use of evidence-based therapies. Theophylline is considered a third- or fourth-line bronchodilator because of its narrow therapeutic window and significant side effects. Although it may be helpful in some individuals with severe COPD, its role in patients who are already receiving various combination therapies is unclear.

Mucolytic drugs may be beneficial in decreasing sputum viscosity and reducing disability and exacerbations, but their role in patients who are already receiving inhaled corticosteroids is, similarly, unclear.

MANAGING SYSTEMIC EFFECTS AND COMORBIDITIES

COPD is often associated with comorbidities, many of which share common systemic inflammatory features with COPD. Most common among these are systemic hypertension, dyslipidaemia, diabetes, coronary heart disease, heart failure and osteoporosis. Some of the management principles described above can also be applied to preventive and therapeutic interventions for these common comorbidities. Smoking cessation, exercise and rehabilitation all have the potential to benefit a range of chronic diseases. Specific treatments such as the use of statins to manage hyper-lipidaemia have provoked considerable interest because of studies suggesting they may have beneficial effects in patients with COPD over and above their impact on cardiac risk. Prospective studies are awaited.

Cardiovascular disease

Cardiovascular disease is the most frequent and important of all COPD co-morbidities and may contribute significantly to disease burden. Beta blockers have proven mortality benefits in the management of cardiac disease but their use is limited in patients with COPD because of their potential to cause acute broncho-spasm, increase airway hyper-responsiveness and worsen respiratory symptoms. Concerns have been allayed to some extent by a recent meta-analysis suggesting that cardioselective beta blockers are safe in patients with COPD, even in those with severe airflow obstruction. None-theless,
the included studies were of short duration and the absolute numbers included were small, thus providing little guidance about long-term safety and potential morbidity. European Society of Cardiology guidelines state that COPD is not a contraindication to the use of beta blockers; however, low-dose initiation and gradual up-titration is recommended.28

Osteoporosis

Osteoporosis is a major comorbidity in COPD and patients are at increased risk even in the absence of corticosteroid use. Although no clear association has been demonstrated between the inhaled corticosteroids and increased bone fragility, regular courses of oral corticosteroids will further increase osteoporosis risk. Index of suspicion should be high and treatment should proceed according to standard guidelines.

Anxiety and depression

Patients with COPD have an increased prevalence of both anxiety disorders and depression compared with the general population. These conditions increase disability and social isolation and impair functional status, resulting in reduced quality of life and poorer prognosis.

Standard management principles apply, although evidence for the effectiveness of specific pharmacotherapy is limited in patients who also have COPD and further clinical trials are needed.8 Exercise in the context of pulmonary rehabilitation has proven beneficial in management.29

Other comorbidities

Other comorbidities that may compromise survival and add considerably to the overall burden of COPD include diabetes mellitus, hypertension and vasculopathy, as well as systemic consequences of COPD, such as weight loss and muscle dysfunction due to inactivity and deconditioning. The metabolic and vascular issues should be investigated and treated appropriately, and pulmonary rehabilitation is again important in managing the consequences of inactivity and deconditioning.

Although low body weight is associated with a poorer prognosis, and nutritional advice should be provided, the effects of nutritional supplementation in underweight patients with COPD have been disappointing.30 In the absence of guidelines for the management of multimorbidities, other comorbidities should be managed according to relevant diseasespecific guidelines.

OXYGEN THERAPY

Long-term continuous oxygen therapy

Oxygen therapy may be appropriate in patients with severe COPD for the management of hypoxaemia. When PaO₂ is 55 mmHg or below, or PaO₂ is 59 mmHg or below in the presence of pulmonary hypertension, right heart failure or polycythaemia, continuous oxygen therapy for at least 15 hours per day (or as long as 24 hours, if tolerated) has been shown to prolong life.31,32

Right heart failure presenting as ankle oedema or raised jugular venous pressure in a patient with COPD should flag the need for arterial blood gas measurement. Other indicators suggesting a need for measurement of arterial blood gases include the presence of cyanosis or polycythaemia, known very severe COPD with FEV₁ less than 30%, and pulse oximetry reading less than 92%.3 Australian guidelines recommend oxygen therapy should only be provided to those who have ceased smoking.33

In patients with COPD, low flow rates of oxygen (2 L/minute) via nasal cannula are generally sufficient to raise oxygen saturations to satisfactory levels and there is usually no requirement to increase flow rates nocturnally.34 It is important to explain to patients that the indication for long-term oxygen use is the presence of hypoxaemia but that there may be no improvement in dyspnoea through its use. In addition, a recent randomised controlled trial found no benefit over placebo air in terms of breathlessness for patients who are not hypoxic.35

Ambulatory oxygen

Ambulatory oxygen may be used for patients with COPD requiring continuous oxygen in order to maximise relief of hypoxaemia throughout the 24-hour period and to increase mobility. Portable cylinders are available through a range of government-supported schemes (which vary between states and territories)36 and are generally used with a conservation device. Generally, portable oxygen concentrators are not provided through government-subsidised programs, but many patients find the concept of these
light-weight, battery-operated devices, attractive, even though they are expensive. It is, as yet, unclear what role they offer in terms of long-term oxygen use.

Although laboratory-based studies have shown that supplemental oxygen can reduce ventilation and improve exercise capacity in breathless patients with COPD who do not fulfil criteria for the requirement of continuous oxygen therapy, use of oxygen in the ambulatory setting for relief of breathlessness is of questionable benefit. A recent large, randomised controlled trial demonstrated no benefit of oxygen therapy over medical air in relieving breathlessness or improving exercise capacity or quality of life. The indistinguishable benefits over the period of the study of both oxygen and air raise the possibility that inhaled therapy with either gas provides a powerful placebo effect.

Nocturnal oxygen therapy

Hypoxaemia may occur during sleep in patients with severe COPD due to hypoventilation or worsening ventilation perfusion. Clinical consequences of isolated nocturnal hypoxaemia are unknown and results of clinical trials of nocturnal oxygen therapy in such patients have been contradictory. Further studies are needed, but current consensus suggests that nocturnal oxygen therapy may be indicated in patients whose nocturnal arterial oxygen saturation repeatedly falls below 88% or who have evidence of hypoxia-related sequelae. Any contributing factors such as obstructive sleep apnoea or cardiac failure must first have been treated optimally.

NONINVASIVE VENTILATION

Noninvasive ventilation (NIV) is any form of ventilatory assistance delivered without the need for an endotracheal tube. It consists of an electronically powered device, fitted to the patient via a mask, which provides ventilatory support. Some authors include continuous positive airways pressure (CPAP), in this definition, while others include only BiLevel CPAP (Figure). CPAP provides a single pressure throughout the respiratory cycle whereas BiLevel CPAP alternates between two pressures; a higher pressure at inspiration and a lower pressure at expiration. Most BiLevel devices have the capacity to respond to the patient’s respiratory efforts or to provide extra ‘breaths’ if the patient’s respiratory rate is low.

NIV in acute respiratory failure

NIV plays a key role in the routine management of patients with acute hypercapnic respiratory failure requiring ventilatory support due to acute exacerbations of COPD. Before the availability of NIV, such patients often required invasive ventilation in the ICU, with consequent poor acute outcomes. Used in combination with other treatments for acute exacerbations of COPD, NIV is clearly superior to intubation in terms of mortality, morbidity and length of stay. In addition, complications associated with intubation, such as ventilator-associated pneumonia, are much reduced. NIV can be delivered outside the ICU setting and may be a more agreeable option for patients compared with intubation as they are able to eat, talk and receive physiotherapy during the period of NIV support. The utility of NIV in relieving breathlessness is less certain.

NIV in chronic respiratory failure

NIV in overlap syndrome

Both obstructive sleep apnoea (OSA) and COPD are common diseases, and the occurrence of both in a single patient is termed the ‘overlap syndrome’. The morbidity and mortality of the overlap syndrome is greater than that of either COPD or OSA alone. A recent observational trial of CPAP in patients with overlap OSA/COPD found decreased hospitalisations and mortality in the treated group.

The impact of coexistent OSA on the natural history of COPD is not yet known. When evaluating a patient with either OSA or COPD, a high index of suspicion is crucial to diagnose the overlap syndrome. Daytime hypercapnia and pulmonary hypertension out of proportion to the severity of the...
disease in patients known to have only one disease (either OSA or COPD) should prompt assessment for the other disorder. Currently, CPAP (with oxygen therapy as needed) is the treatment of choice for the overlap syndrome.

Home nocturnal NIV in COPD

Patients with severe COPD may develop significant oxygen desaturation and hypoventilation nocturnally. Respiratory muscle fatigue is believed to contribute to both gas exchange abnormalities and symptoms, and some studies have found both sleep and respiratory failure parameters are improved by domiciliary nocturnal NIV. However, the reported impact on daytime function, breathlessness, quality of life and mortality of home-delivered nocturnal NIV has been contradictory. For instance, a large trial found that although nocturnal NIV improved survival, this was at the expense of decreased quality of life, tempering enthusiasm for the use of NIV in this population. The decision to initiate chronic nocturnal NIV remains contentious and is generally made by specialist providers, often following an inpatient admission for acute hypercapnic respiratory failure. Ongoing research is required to delineate the role of NIV for COPD in the home setting.

Surgery and Devices

Occasional patients with severe, disabling COPD may be suitable for consideration of lung transplantation (younger patients with fewer comorbidities), whereas those who have predominant upper lobe emphysema with marked hyperinflation or ‘gas trapping’ may benefit from lung volume reduction surgery. Alternative nonsurgical approaches include a type of ‘bronchoscopic lung volume reduction’. Discussions about such highly specialised palliative approaches necessitate referral of patients to a specialist centre.

Advance Care Planning in COPD

Advance care planning (ACP) is the process by which patients, families and health professionals discuss and establish future goals of care according to the patient’s values and preferences. It includes clarifying a patient’s understanding of their illness and treatment options, identifying their wishes and appointing a substitute decision maker. It is an ongoing process, and decisions may change as COPD progresses.

ACP can improve patient and family satisfaction with care, and limit burdensome treatment at the end of life in line with patient preferences, and reduce stress, anxiety and depression in surviving relatives. Many patients with COPD and their families want information about the diagnosis, its likely progress and prognosis and what dying might be like, and they want to participate in ACP. Despite this, many patients with advanced COPD lack knowledge about the disease and its likely time course and may be unaware that the disease will progress and may be fatal.

Patients expect their doctors to initiate conversations about ACP and appreciate it when they do. Some doctors may find these conversations difficult, and may be unsure as to how to get started. The Victorian Quality Council has recently developed ‘The Next Steps’ program to assist doctors in undertaking ACP conversations.

Palliative Care

Definition of palliative care

Palliative care is an approach that improves the quality of life of those facing life-threatening illness, through early identification, assessment and treatment of pain and other problems, physical, psychological and spiritual. Importantly, palliative care and end of life care are not synonymous. A palliative approach, focusing on symptom relief, may be applicable for quite some time before death. End of life care refers to the period just prior to death.

Need for palliative care in COPD

The need for palliative care in COPD is increasingly being recognised. As dyspnoea may be difficult to relieve in patients with very severe COPD despite maximal standard therapy, evidence-based symptom-directed therapy may be appropriate. Treatment may include nonpharmacological therapies such as fans or the use of low doses of opioids that have a demonstrated role in the palliation of intractable dyspnoea. Other common symptoms include fatigue, xerostomia, cough and chest pain. The Therapeutic Guidelines: Palliative Care offers excellent
practical guidance regarding symptom-directed strategies.59
COPD is characterised by repeated exacerbations, any of which might be fatal. Patients’ palliative care needs may increase during exacerbations and decrease afterward, and access to palliative care should be on the basis of need rather than prognosis. Specialist palliative care involvement may vary to accommodate these changing needs but some changes in service models are required.60 (For example, models of care are required that facilitate shared care involving specialist palliative care providers when needs are especially high or complex and other providers when needs are less.)
Usual care providers (GPs, community nurses and specialist physicians) may be best placed to provide most patients’ palliative care needs,61-62 but may need additional training to do so.64-68 Specialist expertise should be reserved for treating complex symptomatology or for discussions when there are complex psychosocial factors impeding care. Clear, effective communication is important and excellent guidelines may aid such conversations.69

When to refer to palliative care
There is no consensus on when to refer patients with COPD to palliative care, but clinical pointers include:
• repeated hospital admissions
• being housebound or chairbound
• an FEV1 less than 30% predicted
• on long-term oxygen, or
• a BMI below 20kg/m².70
An exacerbation requiring NIV might also prompt referral, given the one-year survival after such an episode is only 50%.71 In addition, referral may be considered for patients with difficult-to-manage symptoms, who are unresponsive to usual therapy or with complex psychosocial situations and/or complex ACP needs.

END OF LIFE CARE
Although some patients die of COPD, many die with the disease.72,73 However, patients with COPD are more likely to die in the ICU than those with lung cancer, despite having an equal desire to die at home.73 This may be due to the final, fatal exacerbation being indistinguishable from previous exacerbations, compounded by a medical and social culture that strives for restitution of premorbid health.74

End of life care for patients with COPD requires clear communication about the goals of care, assessment and management of symptoms and attempts to promote and maintain dignity. This implies the ability to ‘diagnose’ dying,74 which can be challenging in patients having a COPD exacerbation. A time-limited trial of usual exacerbation treatments (antibiotics, corticosteroids, bronchodilators and/or ventilatory support with NIV or even invasive ventilation) may be appropriate.75,76 If the patient fails to improve, the diagnosis of dying is made and comfort becomes the focus. The Liverpool Care Pathway for the Dying Patient may be helpful to guide such care.77

Although a detailed discussion of end of life care is beyond the scope of this article, medications that may be used include opioids for breathlessness, antipsychotics and benzodiazepines for agitation and anticholinergics for the management of terminal secretions.

CONCLUSIONS
Patients with severe COPD require maximal tolerated standard treatment for their disease targeted at symptom control, prevention of exacerbations and treatment of comorbidities, including cardiovascular disease, anxiety and depression. Hypoxaemia may warrant consideration of long-term oxygen therapy. Pulmonary rehabilitation improves exercise capacity and dyspnoea, even in patients with severe COPD. Intractable breathlessness may be treated by nonpharmacological methods and/or the judicious use of pharmacological treatments. A palliative approach to COPD care focusing on symptom relief should be considered as exacerbations become more frequent and symptom control becomes more difficult. Specialised palliative care services may be involved at this stage.

End of life care in COPD requires clear communication about the goals of care, ideally should involve the patient and their caregivers and should be initiated through advance care planning. Discussions should preferably occur well before death is imminent, and continue through to the end of life.

References
A list of references is available on request to the editorial office.

COMPETING INTERESTS
Dr Detering: None. Dr Smith: None. Professor McDonald has received reimbursement in the past three years for Advisory Board Membership and speakers fees from GlaxoSmithKline, Novartis, Boehringer Ingelheim and Pfizer; her Department has received a small equipment grant for a student research project from GlaxoSmithKline and she has received funding to attend an educational meeting from Nycormed.

MODERN MEDICINE | Volume 31 | September 2014 | 25
This is a CME test. It is presented to you in collaboration with the Middle East CME organizations. To test your knowledge fill-in this questionnaire and check yourself in two months or refer to your CME unit that might have other procedures - we will publish the answers in 2 months.

MANAGING SEVERE COPD MUCH CAN BE DONE

SECTION A.

Case study. Clem is 76 years old and has severe COPD. You have been his GP for the past 10 years. His 78-year-old wife is his main carer and he has a home care package. You have recently started visiting Clem at home, as he has become housebound. His current medications are salbutamol, tiotropium, paracetamol, aspirin, atorvastatin and, as required, sublingual nitrate.

QUESTION 1. Which two of the following statements are correct of COPD?
A. About 50,000 people have COPD
B. Spirometry is essential to confirm the diagnosis of COPD
C. The degree of airflow obstruction in patients with severe COPD is the main predictor of symptoms
D. Patients with very severe COPD may have symptoms as debilitating as those with advanced cancer

Case study (continued). You review Clem’s current symptoms.

QUESTION 2. Which of the following are symptoms of very severe COPD? Choose the best answer.
A. Dyspnoea
B. Fatigue
C. Depression
D. All of the above

Case study (continued). Clem is very short of breath even at rest, and tells you he barely moves from his chair throughout the day.

QUESTION 3. Which three of the following may be contributing to Clem’s poor exercise tolerance?
A. The severity of his COPD
B. Deconditioning
C. Depression
D. An adverse drug reaction

QUESTION 4. Which two of the following statements are correct of therapy in patients with COPD?
A. The inflammatory response in COPD is corticosteroid-sensitive
B. A combination of a long-acting anticholinergic and a long-acting beta agonist has no proven benefit over each monotherapy
C. Pulmonary rehabilitation may improve symptoms at all stages of COPD severity
D. Review of inhaler technique should be repeated at each visit

QUESTION 5. Discussing advance care planning with patients with severe illness, such as severe COPD can be difficult. What can your practice do to support this? Select as many answers as you think appropriate.
A. The practice keeps written information to give to patients about the decision-making process
B. Staff have access to advance care planning document templates
C. Ensure computer systems allow recalls to be set to regularly review and update documentation
D. Other – please write the strategies you use
SECTION B.

QUESTION 6. Which two vaccinations are recommended for all patients with COPD?

A. Influenza vaccination
B. Tetanus vaccination
C. Pneumococcal vaccination
D. Hepatitis B vaccination

Case study (continued). Clem eats very little and has lost a considerable amount of weight since your last visit. He seems anxious and lonely, and his wife is worried about him.

QUESTION 7. Which one of the following is the most frequent and important of all COPD comorbidities?

A. Cardiovascular disease
B. Lung cancer
C. Osteoporosis
D. Depression

QUESTION 8. List at least two indicators in patients with COPD that flag the need for arterial blood gas measurement.

QUESTION 9. Which three of the following statements are correct regarding oxygen therapy in patients with severe COPD?

A. Oxygen therapy for at least 15 hours per day has been shown to prolong life when a patient’s PaO2 is 75 mmHg or below
B. Nocturnal oxygen therapy may be indicated in patients whose nocturnal arterial oxygen saturation repeatedly falls below 88%
C. Oxygen therapy should not be offered to patients with COPD who continue to smoke
D. Long-term oxygen therapy may not improve patients’ dyspnoea

Case study (continued). You feel the time has come to discuss palliative care with Clem and his wife.

QUESTION 10. List below at least three clinical pointers that would prompt you to consider palliative care for patients with COPD.