Patients post myocardial infarction

Tailored management improves outcomes

Patients who have had a myocardial infarction need aspirin and statin therapy and careful evaluation to identify those who will benefit from revascularisation or implantable device therapy and appropriate additional pharmacological treatment.

The management of the patient post myocardial infarction (MI) is a team effort between the hospital, cardiologist and GP to ensure that he or she receives the benefit of the substantial advances in treatment that have been shown over the past 20 years to improve outcomes. The hospital has a responsibility to provide sufficient details on whether the patient had an ST elevation or non-ST elevation MI (STEMI or NSTEMI), the extent and location of myocardial damage, the procedures undertaken in hospital,

IN SUMMARY
• A large evidence base and detailed guidelines are available to help tailor post coronary care management to the individual patient.
• Definite indications for coronary revascularisation include patients who have had a myocardial infarction (MI) with ongoing symptoms and the presence of a critical coronary stenosis, left main disease or triple vessel coronary artery disease with extensive ischaemia.
• Although all patients post MI should be given aspirin and statins, the choice and duration of other pharmaceutical therapy is determined by the patients’ symptoms and presence of left ventricular dysfunction.
• Early implantation of an implantable cardioverter defibrillator does not benefit patients immediately post MI. However, device therapy is indicated in those who had an MI more than 40 days previously and whose ejection fraction is persistently below 35%.
Abdominal Pain comes from cramped muscles. Relief comes from Buscopan.

Dosage:
Adults and children above 6 years of age: 1–2 tablets 3 times a day
(Single dose: 10 – 20 mg, maximum daily dose: 60 mg HBB)
his or her discharge medications and plans for follow-up investigations. The cardiologist needs to communicate the management plan clearly to the patient and the GP. The GP needs to understand the rationale for treatment, ensure that the post-MI management plan is followed through and ensure any treatment side effects are addressed appropriately. Fortunately, there is a large evidence base and detailed guidelines to help tailor post coronary care management to the individual patient who has suffered a STEMI-3 or NSTEMI.4-6

EVALUATION OF THE PATIENT
In the evaluation of the patient post MI, three questions should be addressed:

- Is coronary angiography indicated and will this patient benefit from coronary revascularisation?
- What is the ideal pharmacological management and how long should it continue?
- Should this patient be considered for device therapy?

The following tests are available to help answer these questions, in addition to consideration of the detailed review of the in-hospital course and clinical assessment of the patient.

Coronary angiography
Coronary angiography is often performed in the early stages of hospital treatment and the coronary anatomy guides decisions about post-MI management. If the patient has not had angiography and it is not readily available, noninvasive testing such as exercise testing/stress imaging can be used to stratify risk and decide on referral for angiography. Despite advances in the technique of coronary CT angiography, it still has significant limitations,7 and coronary angiography by cardi catheterisation remains the usual method of assessing coronary anatomy in the patient who has had a coronary event. Coronary CT angiography is not recommended for routine evaluation of the patient post MI at this time.8 Although coronary angiography is now performed in most patients who have had a STEMI or NSTEMI, when it is not available or contraindications exist, alternative modalities such as stress imaging may be considered.

Exercise electrocardiography
Exercise electrocardiography remains a very useful investigation to detect myocardial ischaemia. It is of particular value in regional centres for stable patients at low risk of further coronary events, where ready access to coronary angiography or other imaging modalities is not available.

Echocardiography
Assessment of left ventricular (LV) function in the patient who has had a coronary event is best achieved with an echocardiogram. Serial echocardiographic assessment of LV function can assist not only in overall risk stratification8 but also in making decisions regarding implantation of an implantable cardioverter defibrillator (ICD).

Stress imaging studies
Stress imaging studies with radionuclide myocardial perfusion scanning or stress echocardiography may be required to localise and assess the extent of myocardial ischaemia; the choice between the two modalities may depend on local experience and expertise.10,11 Specialised investigations
Specialised investigations with cardiac magnetic resonance imaging or positron emission tomography scanning can assess cardiac viability with a high specificity and sensitivity. They may be needed in specialised situations to establish whether an extensive area of ischaemic myocardium will benefit from revascularisation.

WILL THIS PATIENT BENEFIT FROM CORONARY REvascularisation?
By the time patients who have had a myocardial infarction visit their GP for follow up, many will have already had revascularisation (percutaneous coronary intervention [PCI] or coronary artery bypass grafting [CABG]) in hospital. The trend for the patient at high risk of further coronary events managed in a tertiary hospital is to try to deliver early revascularisation on arrival or before hospital discharge. For patients at lower risk or those managed in a secondary or regional hospital who have not had revascularisation, the question of whether to refer for revascularisation is one of the most complex decisions with surprisingly little evidence to guide decision-making and has been the subject of much debate.12,13 The definite and possible indications for revascularisation are listed in the box on the next page.14,15

WHAT IS THE IDEAL PHARMACOLOGICAL MANAGEMENT AND ITS DURATION?
Beta blockers
Guidelines recommend indefinite beta blocker treatment in all patients who have had STEMI,14 but the role of beta blockers in the patient who has had STEMI and a successful coronary
reperfusion with restoration of LV function to normal and no evidence of residual myocardial ischaemia remains doubtful. The recommendations for beta blocker treatment are shown in Table 1.

Aspirin
Aspirin in a dose of 75 to 325 mg is recommended in all post coronary management guidelines for patients who have had STEMI or NSTEMI. It is a low-cost and effective treatment, associated with a significant 25% reduction in major vascular events, or an absolute risk reduction of 35 vascular events per 1000 patients treated over two years. Observational studies suggest that bleeding complications are fewer with the lower dose but randomised allocation to low dose (100 mg or less) versus standard dose (101 to 325 mg) showed no differences in bleeding. Enteric coated formulations may be associated with fewer adverse gastric effects than buffered aspirin, but the data remain unclear.

Thienopyridines
Clopidogrel in combination with aspirin is the usual dual antiplatelet therapy (DAPT) for the patient who has received PCI. The duration of DAPT depends on the complexity of the coronary anatomy and the type of PCI. The recommendations are summarised in Table 2. Patients need to be made aware that there is a risk of stent thrombosis if the DAPT is stopped for any reason (including elective surgery) during these recommended periods. When DAPT needs to be stopped during these periods, the issue should be discussed with the treating cardiologist or cardiology service. The role of DAPT in patients who have recovered from conservative management of MI and have not received an intracoronary stent is moot. There is a risk of bleeding with long-term treatment, and, although 12 months of treatment may be justified, the benefit after six weeks is minimal. In patients who have not received a stent, the long-term use of clopidogrel may be best limited to those who are at high risk of a thrombotic event and those who demonstrated a heavy thrombus burden at coronary angiography.

Prasugrel and ticagrelor are more recently available alternatives to clopidogrel. Prasugrel is more effective than clopidogrel in reducing coronary events; however, the early phase of treatment is complicated by a higher bleeding rate, particularly in patients going to bypass surgery. Its role in long-term treatment of patients after a coronary event remains to be established. Ticagrelor has also been shown to be superior to clopidogrel with the advantage that it has a short course of action and may be more suitable for patients requiring surgery, although more expensive than either clopidogrel or prasugrel. Because of its short course of action it needs to be taken twice daily, and patients should be warned regarding noncompliance or premature discontinuation as this may increase the risk of MI, stent thrombosis and death. Both these agents may have a role, however, in patients who have a history of stent thrombosis when taking aspirin and clopidogrel.

Statins
Statin therapy is an essential part of the post-MI regimen. It is associated with an average reduction in post-coronary events of 25 to 30% and an absolute reduction for each 1.0 mmol/L reduction in LDL cholesterol of 48 major vascular events per 1000
cohorts, there is no specific trial to support its use in patients post infarction. Ezetimibe, either alone or in conjunction with statins, has the potential to lower LDL cholesterol, but to date there are no data to demonstrate any clinical benefit.

Other lipid modulations

Lowering triglycerides

There is no clear-cut benefit for lowering triglyceride levels in patients post coronary artery bypass grafting. It remains unclear whether a patient who achieves a reduction of LDL cholesterol to target levels with 80 mg of atorvastatin should be changed to a lower dose of statin, but it may be reasonable to do this to limit side effects. A trial of high dose (80 mg) of simvastatin was associated with a higher than acceptable incidence of myopathy.

Although rosuvastatin has been shown to be effective in high-risk cohorts, there is no specific trial to support its use in patients post infarction. Ezetimibe, either alone or in conjunction with statins, has the potential to lower LDL cholesterol levels, but to date there are no data to demonstrate any clinical benefit.

Table 1. Drugs and Other Management in Patients Post MI

<table>
<thead>
<tr>
<th>Patient category</th>
<th>Drug</th>
<th>Other management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic patient without LV dysfunction</td>
<td>• Aspirin 100–150 mg/day</td>
<td>Consider referral for cardiac rehabilitation</td>
</tr>
<tr>
<td></td>
<td>• Beta blockers (e.g. metoprolol 25-50 mg twice daily or atenolol 25-50 mg/day)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Statin (atorvastatin 80 mg/day or equivalent)</td>
<td></td>
</tr>
<tr>
<td>Asymptomatic patient with LV dysfunction</td>
<td>• Aspirin</td>
<td>If LV dysfunction is persistent and severe (LVEF<35%), consider referral for</td>
</tr>
<tr>
<td></td>
<td>• Statin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Beta blockers of proven benefit in LV dysfunction implantation of ICD (e.g. bisoprolol, carvedilol, nebivolol or extended release metoprolol)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ACE inhibitor or angiotensin receptor blocker</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Aldosterone antagonist (spironolactone or eplerenone)</td>
<td></td>
</tr>
<tr>
<td>Symptomatic patient</td>
<td>• As above</td>
<td>Refer for detailed evaluation including coronary angiography and consideration of PCI and CAGB</td>
</tr>
<tr>
<td></td>
<td>• If angina: standard antianginal therapy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• If dyspnoea: diuretics</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ACE = angiotensin converting enzyme; CABG = coronary artery bypass grafting; ICD = implantable cardioverter defibrillator; LV = left ventricular; LVEF = left ventricular ejection fraction; MI = myocardial infarction; PCI = percutaneous coronary intervention.

Table 2. Duration of Dual Antiplatelet Therapy (DAPT) Post MI

<table>
<thead>
<tr>
<th>Intervention or patient category</th>
<th>DAPT duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balloon angioplasty*</td>
<td>1–3 months</td>
</tr>
<tr>
<td>Bare metal stent*</td>
<td>12 months recommended, 1 month mandatory</td>
</tr>
<tr>
<td>Drug eluting stent</td>
<td>12 months†</td>
</tr>
<tr>
<td>Complex stenting or high risk complex coronary anatomy</td>
<td>Indefinite</td>
</tr>
<tr>
<td>Patient who has not had PCI</td>
<td>3–12 months (longer for patients at high risk of further events)</td>
</tr>
</tbody>
</table>

* Patients with planned surgery may have balloon angioplasty or bare metal stent to limit the duration of DAPT and allow early surgery.
† Newer drug-eluting stents may require shorter duration of DAPT, but this remains unclear.

Abbreviations: DAPT = dual antiplatelet therapy; MI = myocardial infarction; PCI = percutaneous coronary intervention.
myocardial infarction. Trials of gemfibrozil\(^8\) and bezafibrate\(^9\) have not been sufficiently persuasive to establish fibrate therapy in the patient who has had a coronary event, and a large trial with fenofibrate did not achieve its primary end point in patients with type 2 diabetes at relatively high risk of further coronary events.\(^4\)

Raising HDL cholesterol

To date there is no effective HDL cholesterol raising drug available. A trial of torcetrapib demonstrated an increased mortality in patients at high cardiovascular risk.\(^4\) Ongoing trials with dalceetrapib may demonstrate a role for HDL cholesterol raising in the patient after a coronary event.\(^4\)

Omega-3 fatty acids

Fish oil-derived omega-3 fatty acids have been shown to moderately reduce total and sudden post coronary deaths, but it is not clear if this is by a triglyceride lowering effect or other mechanisms.\(^4\) A highly purified form of omega-3 ethyl esters is currently approved for this indication in Australia but not PBS funded.

ACE inhibitors and angiotensin receptor blockers

ACE inhibitors have a clear-cut role in patients with cardiac failure and significant LV dysfunction;\(^4\) however, their use in the absence of post coronary LV dysfunction remains moot. Angiotensin receptor blockers as an alternative to ACE inhibitors have been trialled in patients who have had coronary events; however, the evidence base for this is not as extensive as it is for use of ACE inhibitors post infarction.\(^4\)

Aldosterone blockade

Spironolactone and eplerenone have shown clear-cut benefit in patients with cardiac failure and LV dysfunction.\(^4\) Meticulous monitoring of renal function and potassium levels is required, particularly in patients taking concomitant ACE inhibitors.\(^4\)

Calcium channel blockers

Verapamil and diltiazem are contraindicated in patients who have had an MI and who have LV dysfunction.\(^4\) Amlodipine use has been shown to be safe in the presence of LV dysfunction.\(^5\) The calcium channel blockers have not been shown to have a clear-cut benefit on prognosis and are not recommended for routine use for the patient post infarction.

Antiarrhythmic drugs

Antiarrhythmic drugs have not been shown to improve prognosis for the patient post MI and their use in this setting is not recommended.\(^5\)

Nitrate therapy

Nitrates are indicated for the patient with symptomatic angina but do not have a role in the management of the patient post infarction who does not have angina.\(^5\)

Diuretics and digoxin

Diuretics are useful for the symptomatic relief of cardiac failure but they have not been convincingly shown to improve prognosis.\(^5\) It is important to review a patient’s need for ongoing diuretic therapy at the time of hospital discharge.

Digoxin does not have any clear-cut role in the patient post infarction, except in those who require it in addition, or as an alternative, to beta blockers for rate control of atrial fibrillation.\(^5\)

Coumadins and oral antithrombins

Coumadins do not have a clear-cut role in preventing recurrence in the patient post MI. If a patient has had a large infarction, he or she may benefit from a period of warfarin anticoagulation to prevent stroke.\(^5\) This is particularly the case in the presence of severe LV dysfunction and/or large apicoanterior infarct and definitely if there is intracardiac thrombus demonstrated on echocardiography.\(^5\) New oral antithrombins such as rivaroxaban have been tested in patients who have had coronary events and shown to reduce recurrences but at an increased risk of bleeding.\(^5\)

The modern DAPT era has complicated the management of patients with concurrent acute coronary syndrome and/or recent stenting and atrial fibrillation – in these patients, the use of triple therapy (DAPT plus anticoagulation) significantly increases the risk of adverse bleeding events.\(^5\)

SHOULD THIS PATIENT BE CONSIDERED FOR DEVICE THERAPY?

The early implantation of an ICD in patients who have had an MI has been shown not to deliver any additional benefit.\(^5\) Patients who have had ventricular fibrillation during the early hours of their MI do not need an ICD. Those who had an infarction more than 40 days previously and whose ejection fraction is persistently below 35% should have an ICD implanted, although there are healthcare access and economic limitations to this recommendation. Patients should be on maximal tolerated medical therapy prior to re-evaluation of LV function to prevent unnecessary device implantation and potential morbidity from the device.

CONCLUSION

Contemporary post-MI management should be tailored dependent on
patient characteristics and local access to coronary angiography or noninvasive imaging modalities. Aggressive medical management has proven benefit for secondary prevention. Coronary revascularisation is indicated for persisting symptoms and high-risk, extensive ischaemia. Implantable defibrillators should be considered in those patients who have persisting severe LV dysfunction (ejection fraction less than 35%).

References
References are included in the pdf version of this article available at www.medicinetoday.com.au.

COMPETING INTERESTS. Professor P. Thompson has received research funding from the US National Institutes of Health for study of dual antiplatelet therapy, and has received research funding and travel assistance for study of new oral antithrombins from Bayer, for study of new antiplatelet agents from AstraZeneca, and for study of new MI treatments from Pfizer, Sanofi and Bristol-Myers Squibb. Dr A. Thompson has received speaker fees from Bristol-Myers Squibb; fees for educational material from Servier; educational travel grants and speaker fees from Pfizer, and is an independent Pfizer cardiovascular lipid research grant holder for research mechanisms of statin therapy.
PATIENTS POST MYOCARDIAL INFARCTION: TAILORED MANAGEMENT IMPROVES OUTCOMES

SECTION A

Case study 1. Betty, aged 72 years, recently had an inferior ST elevation myocardial infarction (STEMI) and was treated with an emergency percutaneous coronary intervention (PCI) and a bare metal stent. She was discharged to your care and that of the cardiologist who looked after her as an inpatient. She is also participating in the hospital's cardiac rehabilitation program. She is an ex-smoker and has controlled hypertension and hypercholesterolaemia. An echocardiogram revealed mild left ventricular (LV) dysfunction. She also has stage 2 chronic kidney disease. You are planning her post-discharge GP care.

QUESTION 1. What is the role of echocardiograms in the management of patients such as Betty? Choose the three correct statements.

A. They provide a source of information about LV function
B. They are the best investigation to yield information on coronary anatomy
C. They assist in risk stratification for patients
D. They assist in decision-making regarding the implantation of a defibrillator

Case study 1 (continued). You review Betty’s medications.

QUESTION 2. According to current evidence, how long should a patient such as Betty take a beta blocker? Select the best answer.

A. Six weeks
B. Six months
C. Indefinitely
D. The duration is currently unclear

Case study 1 (continued). Betty is very worried about taking aspirin, as her sister developed peptic ulcer disease after taking long-term NSAIDs for arthritis.

QUESTION 3. Which two of the following statements about aspirin are correct?

A. Randomised trials have consistently shown that the bleeding risk is lower with lower doses
B. Its use is associated with a significant 5% reduction in major vascular events
C. Its use is associated with a significant 25% reduction in major vascular events
D. It is recommended therapy for all patients post-infarction

Case study 1 (continued). Betty is confused about how long she has to take aspirin plus clopidogrel.

QUESTION 4. How long is it recommended that patients such as Betty continue to take the combination of clopidogrel and aspirin? Select the best answer.

A. Three to four weeks
B. 12 months
C. Three years
D. Indefinitely

QUESTION 5. What strategies could you use in your practice to enhance medication compliance in patients such as Betty, who are taking several different medications every day. Select as many answers as you think appropriate.

A. Use the home medicines review item
B. Run education sessions on safe medication use
C. Encourage the use dosette boxes
D. Other – please write the strategies you use below.
CASE STUDY 2. Bill, a farmer, is 63 years of age. Several weeks ago he had a non-ST elevation MI (NSTEMI), which had been diagnosed at your rural hospital. He declined to be transferred to a bigger centre for angiography and was discharged after conservative medical care. He has COPD but remains a heavy smoker and you strongly suspect that he does not take the medications he has been prescribed.

QUESTION 6. What are the three key questions to consider in the evaluation of the patient, such as Bill, post infarction?

CASE STUDY 2 (continued). You consider further investigations for Bill.

QUESTION 7. List at least three outpatient tests that may be indicated in patients post MI following the detailed review of the in-hospital course and clinical assessment (not all may be available in rural areas).

CASE STUDY 2 (continued). Bill asks you about the pills he was given on discharge from the hospital.

QUESTION 8. Which three of the following would usually be appropriate medications for patients post infarction?

A. A beta blocker
B. Aspirin
C. A calcium channel blocker
D. A statin

QUESTION 9. Which three of the following statements are correct regarding the indications for revascularisation?

A. Triple vessel disease and LV dysfunction is a possible indication for revascularisation
B. Ongoing symptoms with a critical coronary stenosis is a definite indication for revascularisation
C. Revascularisation is always indicated in the asymptomatic patient who has tight residual stenosis
D. Revascularisation is definitely indicated in patients with left main or triple vessel coronary artery disease and ongoing symptoms

QUESTION 10. When is an implantable cardioverter defibrillator recommended in patients post MI? Write your answer.
Visanne® 2mg once daily demonstrated:

- Highly effective pain relief\(^1\), 2, 3, 4
- Significant reduction of endometriotic lesions \(^1\)
- Favorable safety and tolerability profile suitable for long-term use \(^4\)

Product Name: Visanne 2mg tablet. Composition: The active substance is dienogest. Each tablet contains 2mg dienogest. The other ingredients are lactose monohydrate, microcrystalline cellulose, potato starch, povidone K 25, magnesium stearate (Ph. Eur.), talc, crospovidone (Type A).

\(^1\) Strowitzki T. et al, Dienogest is as effective as leuprolide acetate in treating the painful symptoms of endometriosis: a 12-week, randomized, double-blind, placebo-controlled study Eur J Obstet Gynecol Reprod Biol 2006; 126(2): 193-98.

\(^4\) Strowitzki T. et al, Dienogest and Visanne® 2mg once daily demonstrated:}