CLINICAL PARTICULARS

Therapeutic Indications

As a neuroleptic agent in:
- Delusions and hallucinations in:
 - acute and chronic schizophrenia;
 - paranoia;
 - acute confusion, alcoholism (Korsakoff's syndrome).

- Hypochondriac delusions.
- Personality disorders: paranoid, schizoid, schizotypal, antisocial, some “borderline” and other personalities.

As a psychomotor anti-agitation agent in:
- Mania, dementia, mental retardation, alcoholism.
- Personality disorders: compulsive, paranoid, hysterical and other personalities.
- Agitation, aggressiveness, and wandering impulses in the elderly.
- Disorders of behaviour and character in children.
- Choreatic movements.
- Singultus (hiccup).
- Tics, stuttering.

As an adjuvant in the treatment of severe chronic pain:
On the basis of its limbic activity, Haldol® often allows the dosage of the analgesic (usually a morphinomimetic) to be reduced.

As an anti-emetic in:
Nausea and vomiting of varying origin. Haldol® is the drug of preference if the classical medicines for nausea and vomiting are insufficiently active.

Posology and Method of Administration
Haldol® Injection is recommended for IM administration only.
Contraindications
Comatose state; CNS depression due to alcohol or other depressant drug; Parkinson’s disease; known hypersensitivity to Haldol®; lesion of the basal ganglia.

Special Warnings and Special Precautions for Use
Rare cases of sudden death have been reported in psychiatric patients receiving antipsychotic drugs, including Haldol®.

Cardiovascular effects
Very rare reports of QT prolongation and/or ventricular arrhythmias, in addition to rare reports of sudden death, have been reported with haloperidol. They may occur more frequently with high doses and in predisposed patients.

The dosages as suggested below are only averages; one should always try to tailor the dose to the patient’s response. This often implies an upward titration in the acute phase, and a gradual reduction in the maintenance phase, in order to determine the minimal effective dose. High doses should only be given to patients responding poorly to lower dosages.

Adults
- As a neuroleptic agent
 - **Acute phase**: acute episodes of schizophrenia, delirium tremens, paranoia, acute confusion, Korsakoff’s syndrome, acute paranoia.
 5-10 mg IM, to be repeated hourly until sufficient symptom control is achieved or up to a maximum of 60 mg/day. When given orally, nearly double the above dose may be needed.
 - **Chronic phase**: chronic schizophrenia, chronic alcoholism, chronic personality disorders. 1-3 mg orally TID, may be increased to 10-20 mg TID, depending on the response.
- As a psychomotor anti-agitation agent
 - **Acute phase**: mania, dementia, alcoholism, personality disorders, behaviour and character disorders, singultus, choreatic movements, tics, stuttering: 5-10 mg IM.
 - **Chronic phase**:
 0.5-1 mg TID orally, may be increased to 2-3 mg TID, if required, to obtain a response.
- As an adjuvant in chronic pain therapy
 0.5-1 mg TID orally, may be adjusted if needed.
- As an anti-emetic
 - Centrally induced vomiting: 5 mg IM.
 - Prophylaxis of postoperative vomiting: 2.5-5 mg IM at the end of surgery.

In elderly patients
Treatment should start with half the dosage stated for adults and adjusted according to the results if necessary.

In children
0.1 mg/3 kg body weight TID orally; may be adjusted if needed.
ally (see Interactions with Other Medicinal Products and Other Forms of Interaction). The risk of QT prolongation and/or ventricular arrhythmias may be increased with higher doses (see Undesirable Effects and Overdose) or with parenteral use, particularly intravenous administration. Continuous ECG monitoring should be performed for QT interval prolongation and for serious cardiac dysrhythmias if Haldol® is administered intravenously. Haldol® Injection is recommended for IM administration only.

Tachycardia and hypotension have also been reported in occasional patients.

Neuroleptic malignant syndrome
In common with other antipsychotic drugs, Haldol® has been associated with neuroleptic malignant syndrome: a rare idiosyncratic response characterized by hyperthermia, generalised muscle rigidity, autonomic instability, altered consciousness. Hyperthermia is often an early sign of this syndrome.

Antipsychotic treatment should be withdrawn immediately and appropriate supportive therapy and careful monitoring instituted.

Tardive dyskinesia
As with all antipsychotic agents, tardive dyskinesia may appear in some patients on long-term therapy or after drug discontinuation. The syndrome is mainly characterized by rhythmic involuntary movements of the tongue, face, mouth or jaw. The manifestations may be permanent in some patients. The syndrome may be masked when treatment is reinstituted, when the dosage is increased or when a switch is made to a different antipsychotic drug. Treatment should be discontinued as soon as possible.

Extrapyramidal symptoms
In common with all neuroleptics, extrapyramidal symptoms may occur, e.g. tremor, rigidity, hypersalivation, bradykinesia, akathisia, acute dystonia.

Antiparkinson drugs of the anticholinergic type may be prescribed as required, but should not be prescribed routinely as a preventive measure. If concomitant antiparkinson medication is required, it may have to be continued after stopping Haldol® if its excretion is faster than that of Haldol® in order to avoid the development or aggravation of extrapyramidal symptoms. The physician should keep in mind the possible increase in intraocular pressure when anticholinergic drugs, including antiparkinson agents, are administered concomitantly with Haldol®.

Seizure/Convulsions
It has been reported that seizures can be triggered by Haldol®. Caution is advised in patients suffering from epilepsy and in conditions predisposing to convulsions (e.g., alcohol withdrawal and brain damage).

Hepatobiliary concerns
As Haldol® is metabolized by the liver, caution is advised in patients with liver disease. Isolated cases of liver function abnormalities or hepatitis, most often cholestatic, have been reported.

Endocrine system concerns
Thyroxin may facilitate Haldol® toxicity. Antipsychotic therapy in patients with hyperthyroidism should be used only with great caution and must always be accompanied by therapy to achieve a euthyroid state. Hormonal effects of antipsychotic neuroleptic drugs include hyperprolactinaemia, which may cause galactorrhoea, gynaecomastia and oligo- or amenorrhoea. Very rare cases of hypoglycaemia and of Syndrome of Inappropriate ADH Secretion have been reported.

Additional considerations
In schizophrenia, the response to antipsychotic drug treatment may be delayed.

Also, if drugs are withdrawn, recurrence of symptoms may not become apparent for several weeks or months. Acute withdrawal symptoms including nausea, vomiting and insomnia have very rarely been described after abrupt cessation of high doses of antipsychotic drugs. Relapse may also occur and gradual withdrawal is advisable.

As with all antipsychotic agents, Haldol® should not be used alone where depression is predominant. It may be combined with antidepressants to treat those conditions in which depression and psychosis coexist.
Interactions with Other Medicinal Products and Other Forms of Interaction
As with other antipsychotics, caution is advised when prescribing haloperidol with medications known to prolong the QT interval.
Haloperidol is metabolized by several routes, including glucuronidation and the cytochrome P450 enzyme system (particularly CYP 3A4 or CYP 2D6). Inhibition of these routes of metabolism by another drug or a decrease in CYP 2D6 enzyme activity may result in increased haloperidol concentrations and an increased risk of adverse events, including QT-prolongation. In pharmacokinetic studies, mild to moderately increased haloperidol concentrations have been reported when haloperidol was given concomitantly with drugs characterized as substrates or inhibitors of CYP 3A4 or CYP 2D6 isozymes, such as,itraconazole, nefazodone, buspirone, venlafaxine, alprazolam, fluvoxamine, quinidine, fluoxetine, sertraline, chlorpromazine, and promethazine. A decrease in CYP2D6 enzyme activity may result in increased haloperidol concentrations. Increases in QTc have been observed when haloperidol was given with a combination of the metabolic inhibitors ketoconazole (400 mg/day) and paroxetine (20 mg/day). It may be necessary to reduce the haloperidol dosage. Caution is advised when used in combination with drugs known to cause electrolyte imbalance.

Effect of Other Drugs on Haloperidol
When prolonged treatment with enzyme-inducing drugs such as carbamazepine, phenobarbital, rifampicin is added to Haldol® therapy, this results in a significant reduction of haloperidol plasma levels. Therefore, during combination treatment, the Haldol® dose or the dosage interval should be adjusted, when necessary. After stopping such drugs, it may be necessary to reduce the dosage of Haldol®.
Sodium valproate, a drug known to inhibit glucuronidation, does not affect haloperidol plasma concentrations.

Effect of Haloperidol on Other Drugs
In common with all neuroleptics, Haldol® can increase the central nervous system depression produced by other CNS-depressant drugs, including alcohol, hypnotics, sedatives or strong analgesics. An enhanced CNS effect, when combined with methyldopa, has also been reported.
Haldol® may antagonise the action of adrenaline and other sympathomimetic agents and reverse the blood-pressure-lowering effects of adrenergic-blocking agents such as guanethidine.
Haldol® may impair the antiparkinson effects of levodopa.
Haloperidol is an inhibitor of CYP 2D6. Haldol® inhibits the metabolism of tricyclic antidepressants, thereby increasing plasma levels of these drugs.

Other Forms of Interaction
In rare cases the following symptoms were reported during the concomitant use of lithium and haloperidol: encephalopathy, extrapyramidal symptoms, tardive dyskinesia, neuroleptic malignant syndrome, brain stem disorder, acute brain syndrome and coma. Most of these symptoms were reversible. It remains unclear whether this represents a distinct clinical entity.
Nonetheless, it is advised that in patients, who are treated concomitantly with lithium and Haldol®, therapy should be stopped immediately if such symptoms occur.
Antagonism of the effect of the anticoagulant phenindione has been reported.

Pregnancy and Lactation
Animal studies have demonstrated a teratogenic effect of haloperidol (see Preclinical Safety Data). Neonates exposed to antipsychotic drugs (including haloperidol) during the third trimester of pregnancy are at risk for extrapyramidal and/or withdrawal symptoms that may vary in severity following delivery. These symptoms in the neonates may include agitation, hypertonia, hypotonia, tremor, somnolence, respiratory distress, or feeding disorder. Haldol® has shown no significant increase in fetal anomalies in large population studies. There have
been isolated case reports of birth defects following fetal exposure to Haldol, mostly in combination with other drugs. Haldol should be used during pregnancy only if the anticipated benefit justifies the potential risk to the fetus.

Haldol® is excreted in breast milk. If the use of Haldol® is considered essential, the benefits of breast-feeding should be balanced against its potential risks. Extrapyramidal symptoms have been observed in breast-fed infants of Haldol® treated women.

Effects on Ability to Drive and Use Machines

Some degree of sedation or impairment of alertness may occur, particularly with higher doses and at the start of treatment and may be potentiated by alcohol. Patients should be advised not to drive or operate machinery during treatment, until their susceptibility is known.

Undesirable Effects

Clinical Trial Data

Placebo-Controlled Double-Blind Data – Adverse Drug Reactions Reported at ≥1% Incidence

The safety of Haldol® (2-20 mg/day) was evaluated in 566 subjects (of which 284 were treated with Haldol®, 282 were given placebo) who participated in 3 placebo-controlled, double-blind clinical trials, two in the treatment of schizophrenia and the third in the treatment of bipolar disorder.

Adverse Drug Reactions (ADRs) reported by ≥1% of Haldol®-treated subjects in these trials are shown in Table 1.

<table>
<thead>
<tr>
<th>System/Organ Class</th>
<th>Haloperidol (n=284) %</th>
<th>Placebo (n=282) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nervous System Disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extrapyramidal disorder</td>
<td>34.2</td>
<td>8.5</td>
</tr>
<tr>
<td>Hyperkinesia</td>
<td>10.2</td>
<td>2.5</td>
</tr>
<tr>
<td>Tremor</td>
<td>8.1</td>
<td>3.6</td>
</tr>
<tr>
<td>Hypertonia</td>
<td>7.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Dystonia</td>
<td>6.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Somnolence</td>
<td>5.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Bradykinesia</td>
<td>4.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Active Comparator-Controlled Data – Adverse Drug Reactions Reported at ≥1% Incidence

Sixteen double-blind active comparator-controlled trials were selected to determine the incidence of ADRs. In these 16 studies, 1295 subjects were treated with 1-45 mg/day Haldol®, in the treatment of schizophrenia. ADRs reported by ≥1% of Haldol®-treated subjects noted in the active-comparator controlled clinical trials are shown in Table 2.

<table>
<thead>
<tr>
<th>System/Organ Class</th>
<th>Haloperidol (n=1295) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nervous System Disorder</td>
<td></td>
</tr>
<tr>
<td>Dizziness</td>
<td>4.8</td>
</tr>
<tr>
<td>Akathisia</td>
<td>2.9</td>
</tr>
<tr>
<td>Dyskinesia</td>
<td>2.5</td>
</tr>
<tr>
<td>Hypokinesia</td>
<td>2.2</td>
</tr>
<tr>
<td>Tardive dyskinesia</td>
<td>1.62</td>
</tr>
<tr>
<td>Eye Disorders</td>
<td></td>
</tr>
<tr>
<td>Oculogyric crisis</td>
<td>1.24</td>
</tr>
<tr>
<td>Vascular Disorders</td>
<td></td>
</tr>
<tr>
<td>Orthostatic hypotension</td>
<td>6.6</td>
</tr>
<tr>
<td>Hypotension</td>
<td>1.47</td>
</tr>
<tr>
<td>Reproductive system and breast Disorders</td>
<td></td>
</tr>
<tr>
<td>Erectile dysfunction</td>
<td>1.0</td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
</tr>
<tr>
<td>Weight increased</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Placebo- and Active Comparator-Controlled Data – Adverse Drug Reactions Reported at <1% Incidence

Additional ADRs that occurred in <1% of Haldol®-treated subjects either of the above 2 clinical datasets are listed below in Table 3.

<table>
<thead>
<tr>
<th>System/Organ Class</th>
<th>Haloperidol (n=1295) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocrine Disorders</td>
<td></td>
</tr>
<tr>
<td>Hyperprolactinaemia</td>
<td></td>
</tr>
</tbody>
</table>
In Table 4, ADRs are presented by frequency category based on spontaneous reporting rates.

Table 4: Adverse Drug Reactions Identified During Postmarketing Experience with Haloperidol (oral, solution, or decanoate) by Frequency Category Estimated From Spontaneous Reporting Rates

<table>
<thead>
<tr>
<th>Category</th>
<th>Frequency</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and Lymphatic System Disorders</td>
<td>Very rare</td>
<td>Agranulocytosis, Pancytopenia, Thrombocytopenia, Neutropenia</td>
</tr>
<tr>
<td>Immune System Disorders</td>
<td>Very rare</td>
<td>Anaphylactic reaction, Hypersensitivity</td>
</tr>
<tr>
<td>Endocrine Disorders</td>
<td>Very rare</td>
<td>Inappropriate antidiuretic hormone secretion</td>
</tr>
<tr>
<td>Metabolic and Nutritional Disorders</td>
<td>Very rare</td>
<td>Hypoglycaemia</td>
</tr>
<tr>
<td>Psychiatric Disorders</td>
<td>Very rare</td>
<td>Psychotic disorder, Agitation, Confusional state, Depression, Insomnia</td>
</tr>
<tr>
<td>Nervous System Disorders</td>
<td>Very rare</td>
<td>Convulsion, Headache</td>
</tr>
<tr>
<td>Cardiac Disorders</td>
<td>Very rare</td>
<td>Torsade de pointes, Ventricular fibrillation, Ventricular tachycardia, Extrasystoles</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Very rare</td>
<td>Bronchospasm, Laryngospasm, Laryngeal oedema, Dyspnoea</td>
</tr>
<tr>
<td>Gastrointestinal Disorders</td>
<td>Very rare</td>
<td>Vomiting, Nausea</td>
</tr>
<tr>
<td>Hepatobiliary Disorders</td>
<td>Very rare</td>
<td>Acute Hepatic Failure, Hepatitis, Cholestasis, Jaundice, Liver function test abnormal</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Very rare</td>
<td>Leukocytoclastic vasculitis, Dermatitis exfoliative, Urticaria, Photosensitivity reaction, Rash, Pruritis, Hyperhidrosis</td>
</tr>
<tr>
<td>Renal and Urinary Disorders</td>
<td>Very rare</td>
<td>Urinary retention</td>
</tr>
<tr>
<td>Pregnancy, Puerperium and Perinatal Conditions</td>
<td>Very rare</td>
<td>Drug withdrawal syndrome neonatal</td>
</tr>
<tr>
<td>Reproductive System and Breast Disorders</td>
<td>Very rare</td>
<td>Priapism, Gynaecomastia</td>
</tr>
<tr>
<td>General Disorders and Administration Site Conditions</td>
<td>Very rare</td>
<td>Sudden Death, Face oedema, Oedema, Hypothermia, Hyperthermia</td>
</tr>
<tr>
<td>Investigations</td>
<td>Very rare</td>
<td>Electrocardiogram QT prolonged, Weight decreased</td>
</tr>
</tbody>
</table>

Postmarketing Data

Adverse events first identified as ADRs during postmarketing experience with haloperidol are included in Tables 4. The postmarketing review was based on review of all cases where there was a use of the active moiety haloperidol (both haloperidol and haloperidol decanoate). In the table, the frequencies are provided according to the following convention:

- **Very common** ≥1/10
- **Common** ≥1/100 to <1/10
- **Uncommon** ≥1/1,000 to <1/100
- **Rare** ≥1/10,000 to <1/1000
- **Very rare** <1/10,000, including isolated reports

Psychiatric Disorders
- Libido decreased
- Loss of libido
- Restlessness

Nervous System Disorders
- Motor dysfunction
- Muscle contractions involuntary
- Neuroleptic malignant syndrome
- Nystagmus
- Parkinsonism
- Sedation

Eye Disorders
- Vision blurred

Cardiac Disorders
- Tachycardia

Musculoskeletal and Connective Tissue Disorders
- Trismus
- Torticollis
- Muscle rigidity
- Muscle Spasms
- Musculoskeletal stiffness
- Muscle Twitching

Reproductive System and Breast Disorders
- Amenorrhoea
- Breast discomfort
- Breast pain
- Galactorrhoea
- Dysmenorrhoea
- Sexual dysfunction
- Menstrual disorder
- Menorrhagia

General Disorders and Administration Site Conditions
- Gait disturbance

Overdose

Symptoms

The manifestations are an exaggeration of the known pharmacological effects and adverse reactions. The
As a direct consequence of the central dopamine blocking effect, haloperidol has an incisive activity on delusions and hallucinations (probably due to an interaction in the mesocortical and limbic tissues) and an activity on the basal ganglia (nigrostriatal bundles). Haloperidol causes efficient psychomotor sedation, which explains the favourable effect on mania and other agitation syndromes (see “Indications”). On the basis of its limbic activity, haloperidol exerts a neuroleptic sedative activity and has been shown to be useful as an adjuvant in the treatment of chronic pain.

The activity on the basal ganglia probably underlies the extrapyramidal motor side-effects (dystonia, akathisia and parkinsonism).

The more peripheral antidopaminergic effects explain the activity against nausea and vomiting (via the chemoreceptor-trigger zone), the relaxation of the gastro-intestinal sphincters and the increased prolactin release (through an inhibition of the activity of the prolactin inhibiting factor, PIF, at the level of the adenohypophysis).

Pharmacokinetic Properties

Absorption

Following oral administration, the bioavailability of the drug is 60 to 70%. Peak plasma levels of haloperidol occur within two to six hours of oral dosing and about twenty minutes after intramuscular administration.

Distribution

Plasma protein binding is 92%. The volume of distribution at steady state (VDss) is large (7.9 ± 2.5 L/kg). Haloperidol crosses the blood-brain barrier easily.

Metabolism

Haloperidol is metabolized by several routes including the cytochrome P450 enzyme system (particularly CYP 3A4 or CYP 2D6) and glucuronidation.

Elimination

The mean plasma half-life (terminal elimination) is 24 hours (range 12 to 38 hours) after oral administration and 21 hours (range 13 to 36 hours) after intramuscular administration. Excretion occurs with the faeces (60%) and the urine (40%). About 1% of the ingested haloperidol is excreted unchanged with the urine.
Therapeutic Concentrations

It has been suggested that a plasma haloperidol concentration range from 4 μg/L to an upper limit of 20 to 25 μg/L is required for a therapeutic response.

Preclinical Safety Data

Nonclinical data reveal no special hazards for humans based on conventional studies of repeat dose toxicity, genotoxicity and carcinogenicity. In rodents, haloperidol administration showed a decrease in fertility, limited teratogenicity as well as embryo-toxic effects.

Haloperidol has been shown to block the cardiac hERG channel in several published studies in vitro. In a number of in vivo studies intravenous administration of haloperidol in some animal models has caused significant QTc prolongation, at doses around 0.3 mg/kg i.v., giving C_{max} plasma levels 3 to 7 times higher than the effective human plasma concentrations of 4 to 20 ng/ml.

These intravenous doses which prolonged QTc did not cause arrhythmias. In some studies higher intravenous doses of 1 to 5 mg/kg haloperidol i.v. caused QTc prolongation and/or ventricular arrhythmias at C_{max} plasma levels 19 to 68 times higher than the effective human plasma concentrations.

PHARMACEUTICAL PARTICULARS

List of Excipients

- **1 mg tablets**: Lactose monohydrate, maize starch, sucrose, talc, cottonseed oil hydrogenated, purified water.
- **2 mg tablets**: Lactose monohydrate, maize starch, sucrose, talc, cottonseed oil hydrogenated, quinoline yellow, purified water.
- **5 mg tablets**: Lactose monohydrate, maize starch, talc, cottonseed oil hydrogenated, indigotindisulfonate sodium, purified water.
- **10 mg tablets**: Calcium hydrogen phosphate dihydrate, maize starch, calcium stearate, quinoline yellow, purified water.
- **20 mg tablets**: Calcium hydrogen phosphate dihydrate, maize starch, pregelatinized potato starch, calcium stearate, purified water.

2 mg/ml oral solution (1 ml = 20 drops): Lactic acid, methyl parahydroxybenzoate, purified water.

10 mg/ml oral solution (1 ml = 20 drops): methyl parahydroxybenzoate, propyl parahydroxybenzoate, lactic acid, purified water.

5 mg/ml injectable solution: Lactic acid, water for injection.

Incompatibilities

None known.

Shelf Life

Observe expiry date on the outer pack.

Special Precautions for Storage

Tablets

Store between 15° and 30°C.

Oral solution

Store between 15° and 30°C.

Do not freeze.

Injectable solution

Store between 15° and 30°C.

Protect from light.

Keep out of reach of children.

Nature and Contents of Container

Tablets are supplied in PVC/Aluminum foil blister packs or polypropylene bottles with LDPE cap with either 1 mg, 2 mg, 5 mg, 10 mg or 20 mg tablets.

The 2 mg/ml oral solution is either supplied in a 15 ml dropper bottle (0.1 mg per drop) or in a 100 ml glass bottle with a pipette. The 10 mg/ml oral solution is supplied in a 100 ml amber glass bottle with a pipette. Injectable solution is supplied in 1 ml amber colored glass ampoules Type I.

Instructions for Use and Handling <and Disposal>

Oral Drops:

Haldol® is supplied in a 15 ml LDPE dropper bottle with a child-proof cap and is opened as follows:
push the plastic screw cap down while turning it counter clockwise.

After removal of the screw cap, the required number of drops can be obtained by means of the drop counter, which is fitted on the bottle.

Oral solution: (glass pipette)

The 100 ml amber glass bottle comes with a child-proof cap, that you should replace by the child-proof drop counter.

These two accessories work as follows:
Push the plastic screw cap down, while turning it counter clockwise.

When using the bottle for the first time:
- Fig. 1: Remove the cap from the bottle.
- Fig. 2: Pull the drop counter out of its case.
- Now, fit the drop counter on the bottle.

From then on, whenever you need the medicine, proceed as below:
- Fig. 3: Remove the drop counter from the bottle.
- Take the amount of liquid you need to give. You will find the number of millilitres or milligrams on the drop counter.
- Fit the drop counter back on the bottle after each use.

Oral solution: (plastic pipette)

Fig. 1: The 100 ml amber glass bottle comes with a child-resistant cap, and should be opened as follows:
- Push the plastic screw cap down while turning it counter clockwise.
- Remove the unscrewed cap.

Fig. 2: Insert the pipette into the bottle.
While holding the bottom ring, pull the top ring up to the mark that corresponds to the number of milliliters or milligrams you need to give.

Fig. 3: Holding the bottom ring, remove the entire pipette from the bottle.
Empty the pipette into a cup by sliding the upper ring down and drink it immediately.
Close the bottle.
Rinse the pipette with some water for future use.

Ampoules:

1. Hold the ampoule between the thumb and index finger, leaving the tip of the ampoule free.
2. With the other hand, hold the tip of ampoule putting the index finger against the neck of ampoule, and the thumb on the coloured point in parallel to the identification coloured ring(s).
3. Keeping the thumb on the point, sharply break the tip of ampoule while holding firmly the other part of the ampoule in the hand.

MANUFACTURED BY
See outer carton.

DATE OF REVISION OF THE TEXT
January 2011