with combination products is initiated but also when the dose is adjusted. If an individual patient should require a combination of doses other than those available in the combination inhaler, appropriate doses of beta-agonist and/or corticosteroids by individual inhalers should be prescribed.

Recommended doses:

Adults (18 years and older): 1-2 inhalations twice daily. Some patients may require up to a maximum of 4 inhalations twice daily.

Adolescents (12-17 years): 1-2 inhalations twice daily.

Patients should be regularly reassessed by a doctor, so that the dosage of Symbicort Turbuhaler remains optimal. The dose should be titrated to the lowest dose at which effective control of symptoms is maintained. When control of symptoms is maintained with the lowest recommended dosage, then the next step could include a test of inhaled corticosteroid alone.

In usual practice when control of symptoms is achieved with the twice daily regimen, titration to the lowest effective dose could include Symbicort Turbuhaler given once daily, when in the opinion of the prescriber, a long acting bronchodilator would be required to maintain control.

Children (6 years and older): A lower strength is available for children 6-11 years.

SYMDET TURBUHALER 160/4.5 µg/dose

Therapeutic indications

Asthma

Symbicort Turbuhaler is indicated in the regular treatment of asthma where use of a combination (inhaled corticosteroid and long acting beta-agonist) is appropriate:

- patients not adequately controlled with inhaled corticosteroids and “as needed” inhaled short acting beta2-agonists
- patients already adequately controlled on both inhaled corticosteroids and long acting beta2-agonists.

COPD

Symptomatic treatment of patients with severe COPD (FEV1<50% predicted normal) and a history of repeated exacerbations, who have significant symptoms despite regular therapy with long-acting bronchodilators.

Posology and method of administration

Asthma

Symbicort Turbuhaler is not intended for the initial management of asthma. The dosage of the components of Symbicort Turbuhaler is individual and should be adjusted to the severity of the disease. This should be considered not only when treatment is initiated but also when the dose is adjusted. If an individual patient should require a combination of doses other than those available in the combination inhaler, appropriate doses of beta-agonist and/or corticosteroids by individual inhalers should be prescribed.

Recommended doses:

Adults (18 years and older): 1-2 inhalations twice daily. Some patients may require up to a maximum of 4 inhalations twice daily.

Adolescents (12-17 years): 1-2 inhalations twice daily.

Patients should be regularly reassessed by a doctor, so that the dosage of Symbicort Turbuhaler remains optimal. The dose should be titrated to the lowest dose at which effective control of symptoms is maintained. When control of symptoms is maintained with the lowest recommended dosage, then the next step could include a test of inhaled corticosteroid alone.

In usual practice when control of symptoms is achieved with the twice daily regimen, titration to the lowest effective dose could include Symbicort Turbuhaler given once daily, when in the opinion of the prescriber, a long acting bronchodilator would be required to maintain control.

Children (6 years and older): A lower strength is available for children 6-11 years.

COPD

Adults: 2 inhalations twice daily.

Special patient groups: There is no need to adjust the dose in elderly patients. There are no data available for use of Symbicort Turbuhaler in patients with hepatic or renal impairment. As budesonide and formoterol are primarily eliminated via hepatic metabolism, an increased exposure can be expected in patients with severe liver cirrhosis.

Instructions for correct use of Turbuhaler:

Turbuhaler is inspiratory flow-driven, which means that when the patient inhales through the mouthpiece, the substance will follow the inspired air into the airways.
Note: It is important to instruct the patient

- To carefully read the instructions for use/handling at the end of this leaflet
- To breathe in forcefully and deeply through the mouthpiece to ensure that an optimal dose is delivered to the lungs
- Never to breathe out through the mouthpiece
- To rinse the mouth out with water after inhaling the prescribed dose to minimise the risk of oropharyngeal thrush

The patient may not taste or feel any medication when using Turbuhaler due to the small amount of drug dispensed.

Contraindications

Hypersensitivity (allergy) to budesonide, formoterol or inhaled lactose.

Special warnings and precautions for use

It is recommended that the dose is tapered when the treatment is discontinued and should not be stopped abruptly.

If patients find the treatment ineffective, or exceed the current dose of the fixed combination, medical attention must be sought. Increasing use of rescue bronchodilators indicates a worsening of the underlying condition and warrants a reassessment of the asthma therapy. Sudden and progressive deterioration in control of asthma or COPD is potentially life threatening and the patient should undergo urgent medical assessment. In this situation consideration should be given to the need for increased therapy with corticosteroids or addition of systemic anti-inflammatory therapy, such as a course of oral corticosteroids, or antibiotic treatment if an infection is present.

There are no data available on the use of Symbicort Turbuhaler in the treatment of an acute asthma attack. Patients should be advised to have their rapid acting bronchodilator available at all times.

Patients should be reminded to take Symbicort Turbuhaler daily as prescribed even when asymptomatic.

Therapy should not be initiated during an exacerbation.

As with other inhalation therapy, paradoxical bronchospasm may occur, with an immediate increase in wheezing after dosing. Symbicort Turbuhaler should then be discontinued; treatment should be re-assessed and alternative therapy instituted if necessary.

Systemic effects may occur with any inhaled corticosteroid, particularly at high doses prescribed for long periods. These effects are much less likely to occur with inhalation treatment than with oral corticosteroids. Possible systemic effects include adrenal suppression, growth retardation in children and adolescents, decrease in bone mineral density, cataract and glaucoma.

It is recommended that the height of children receiving prolonged treatment with inhaled corticosteroids is regularly monitored. If growth is slowed, therapy should be re-evaluated with the aim of reducing the dose of inhaled corticosteroid. The benefits of the corticosteroid therapy and the possible risks of growth suppression must be carefully weighed. In addition consideration should be given to referring the patient to a paediatric respiratory specialist.

Limited data from long-term studies suggest that most children and adolescents treated with inhaled budesonide will ultimately achieve their adult target height. However, an initial small but transient reduction in growth (approximately 1 cm) has been observed. This generally occurs within the first year of treatment.

Potential effects on bone density should be considered particularly in patients on high doses for prolonged periods that have coexisting risk factors for osteoporosis. Long-term studies with inhaled budesonide in children at mean daily doses of 400 micrograms (metered dose) or in adults at daily doses of 800 micrograms (metered dose) have not shown any significant effects on bone mineral density. No information regarding the effect of Symbicort at higher doses is available.

If growth is slowed, and to minimise the risk of possible systemic effects, it is important that therapy is reviewed and the dose of inhaled corticosteroid is adjusted to the lowest dose at which effective control is maintained.

If there is any reason to suppose that adrenal function is impaired from previous systemic steroid
The benefits of inhaled budesonide therapy would normally minimise the need for oral steroids, but patients transferring from oral steroids may remain at risk of impaired adrenal reserve for a considerable time. Patients who have required high dose emergency corticosteroid therapy in the past or prolonged treatment with high doses of inhaled corticosteroids may also be at risk. Additional systemic corticosteroid cover should be considered during periods of stress or elective surgery.

To minimise the risk of oropharyngeal candida infection the patient should be instructed to rinse the mouth with water after each dosing occasion. Concomitant treatment with ketoconazole or other potent CYP3A4 inhibitors should be avoided. If this is not possible the time interval between administration of the interacting drugs should be as long as possible. Symbicort Turbuhaler should be administered with caution in patients with thyrotoxicosis, phaeochromocytoma, diabetes mellitus, untreated hypokalaemia, hypertrophic obstructive cardiomyopathy, idio-pathic subvalvular aortic stenosis, severe hypertension, aneurysm or other severe cardiovascular disorders, such as ischaemic heart disease, tachyarrhythmias or severe heart failure.

Caution should be observed when treating patients with prolongation of the QTc-interval. Formoterol itself may induce prolongation of the QTc-interval. The need for, and dose of inhaled corticosteroids should be re-evaluated in patients with active or quiescent pulmonary tuberculosis, fungal and viral infections in the airways.

Potentially serious hypokalaemia may result from high doses of beta2-agonists. Concomitant treatment of beta2-agonist with drugs which can induce hypokalaemia or potentiate a hypokalemic effect, e.g. xanthine-derivatives, steroids and diuretics, may add to a possible hypokalaemic effect of the beta2-agonist. Particular caution is recommended in unstable asthma with variable use of rescue bronchodilators, in acute severe asthma as the associated risk may be augmented by hypoxia and in other conditions when the likelihood for hypokalaemia adverse effects is increased. It is recommended that serum potassium levels are monitored during these circumstances.

As for all beta2-agonists, additional blood glucose controls should be considered in diabetic patients. Symbicort Turbuhaler contains lactose (<1 mg/inhalation). This amount does not normally cause problems in lactose intolerant people.

Interactions

Ketoconazole 200 mg once daily increased plasma levels of concomitantly administered oral budesonide (single dose of 3 mg) on average six-fold. When ketoconazole was administered 12 hours after budesonide the concentration was on average increased three-fold. Information about this interaction is lacking for inhaled budesonide, but marked increases in plasma levels could be expected. Since data to give dosage recommendations are lacking, the combination should be avoided. If this is not possible the time interval between administration of ketoconazole and budesonide should be as long as possible. A reduction in the dose of budesonide should also be considered. Other potent inhibitors of CYP3A4 are also likely to markedly increase plasma levels of budesonide.

Beta-adrenergic blockers can weaken or inhibit the effect of formoterol. Symbicort Turbuhaler should therefore not be given together with beta-adrenergic blockers (including eye drops) unless there are compelling reasons.

Concomitant treatment with quinidine, disopyramide, procainamide, phenothiazines, antihistamines (terfenadine), monoamine oxidase inhibitors and tricyclic anti-depressants can prolong the QTc-interval and increase the risk of ventricular arrhythmias.

In addition L-Dopa, L-thyroxine, oxytocin and alcohol can impair cardiac tolerance towards β2-sympathomimetics.

Concomitant treatment with monoamine oxidase inhibitors including agents with similar properties such as furazolidone and procarbazine may precipitate hypertensive reactions.

There is an elevated risk of arrhythmias in patients receiving concomitant anaesthesia with halogenated hydrocarbons.
Concomitant use of other beta-adrenergic drugs can have a potentially additive effect. Hypokalaemia may increase the disposition towards arrhythmias in patients who are treated with digitalis glycosides. Budesonide has not been observed to interact with any other drugs used in the treatment of asthma.

Pregnancy and lactation
For Symbicort Turbuhaler or the concomitant treatment with formoterol and budesonide, no clinical data on exposed pregnancies are available. Animal studies with respect to reproductive toxicity of the combination have not been performed. There are no adequate data from use of formoterol in pregnant women. In animal studies formoterol has caused adverse effects in reproduction studies at very high systemic exposure levels.

Data on approximately 2000 exposed pregnancies indicate no increased teratogenic risk associated with the use of inhaled budesonide. In animal studies glucocorticosteroids have been shown to induce malformations. This is not likely to be relevant for humans given recommended doses.

Animal studies have also identified an involvement of excess prenatal glucocorticoids in increased risks for intrauterine growth retardation, adult cardiovascular disease and permanent changes in glucocorticoid receptor density, neurotransmitter turnover and behaviour at exposures below the teratogenic dose range.

During pregnancy, Symbicort Turbuhaler should only be used when the benefits outweigh the potential risks. The lowest effective dose of budesonide needed to maintain adequate asthma control should be used.

It is not known whether formoterol or budesonide passes into human breast milk. In rats, small amounts of formoterol have been detected in maternal milk. Administration of Symbicort Turbuhaler to women who are breastfeeding should only be considered if the expected benefit to the mother is greater than any possible risk to the child.

Effects on ability to drive and use machines
Symbicort Turbuhaler has no or negligible influence on the ability to drive and use machines.

Undesirable effects
Since Symbicort Turbuhaler contains both budesonide and formoterol, the same pattern of undesirable effects as reported for these substances may occur. No increased incidence of adverse reactions has been seen following concurrent administration of the two compounds. The most common drug related adverse reactions are pharmacologically predictable side-effects of beta2-agonist therapy, such as tremor and palpitations. These tend to be mild and usually disappear within a few days of treatment. In a 3-year clinical trial with budesonide in COPD, skin bruises and pneumonia occurred at a frequency of 10% and 6%, respectively, compared with 4% and 3% in the placebo group (p<0.001 and p<0.01, respectively). Adverse reactions, which have been associated with budesonide or formoterol, are given below.

Common (>1/100, <1/10)	Cardiovascular system:	Headache
Central nervous system:	Palpitations	
Musculoskeletal system:	Tremor	
Respiratory tract:	Candida infections in the oropharynx, mild irritation in the throat, coughing, hoarseness	

Uncommon (>1/1,000, <1/100)	Cardiovascular system:	Tachycardia
Central nervous system:	Muscle cramps	
Respiratory tract:	Agitation, restlessness, nervousness, nausea, dizziness, sleep disturbances	
Skin:	Bruises	

Rare (>1/10,000, <1/1,000)	Skin:	Exanthema, urticaria, pruritus, dermatitis, angioedema
Respiratory tract:	Bronchospasm	
Metabolic:	Hypokalaemia	
Cardiovascular system:	Atrial fibrillation, supraventricular tachycardia, extrasystoles	

Very rare (<1/10,000)	Metabolic:	Hyperglycaemia, signs or symptoms of systemic glucocorticosteroid effects (including hypofunction of the adrenal gland)
Psychiatric disorders:	Depression, behavioural disturbances (mainly in children)	
Central nervous system:	Taste disturbances	
Cardiovascular system:	Angina pectoris, variations in blood pressure	
As with other inhalation therapy, paradoxical bronchospasm may occur in very rare cases.
Systemic effects of inhaled corticosteroids may occur particularly at high doses prescribed for prolonged periods.
Treatment with beta2-agonists may result in an increase in blood levels of insulin, free fatty acids, glycerol and ketone bodies.

Overdose
An overdose of formoterol would likely lead to effects that are typical for beta2-adrenergic agonists: tremor, headache, palpitations. Symptoms reported from isolated cases are tachycardia, hyperglycaemia, hypokalaemia, prolonged QTC-interval, arrhythmia, nausea and vomiting. Supportive and symptomatic treatment may be indicated. A dose of 90 micrograms administered during three hours in patients with acute bronchial obstruction raised no safety concerns.
Acute overdosage with budesonide, even in excessive doses, is not expected to be a clinical problem. When used chronically in excessive doses, systemic glucocorticoid effects, such as hypercorticism and adrenal suppression, may appear.
If Symbicort therapy has to be withdrawn due to overdose of the formoterol component of the drug, provision of appropriate inhaled corticosteroid therapy must be considered.

Pharmacodynamic properties
Mechanisms of action and pharmacodynamic effects Symbicort Turbuhaler contains formoterol and budesonide, which have different modes of action and show additive effects in terms of reduction of asthma exacerbations. The mechanisms of action of the two substances, respectively are discussed below.

Budesonide
Budesonide given by inhalation at recommended doses has a glucocorticoid antiinflammatory action within the lungs, resulting in reduced symptoms and exacerbations of asthma with less adverse effects than when corticosteroids are administered systemically. The exact mechanism responsible for this antiinflammatory effect is unknown.

Formoterol
Formoterol is a selective beta2-adrenergic agonist that produces relaxation of bronchial smooth muscle in patients with reversible airways obstruction. The bronchodilating effect sets in rapidly, within 1-3 minutes after inhalation, and has a duration of 12 hours after a single dose.

Symbicort Turbuhaler
Asthma
In clinical trials in adults, the addition of formoterol to budesonide improved asthma symptoms and lung function, and reduced exacerbations.
In two 12-week studies the effect on lung function of Symbicort Turbuhaler was equal to that of the free combination of budesonide and formoterol, and exceeded that of budesonide alone. There was no sign of attenuation of the anti-asthmatic effect over time.
In a 12-week paediatric study 85 children aged 6-11 years were treated with Symbicort Turbuhaler (2 inhalations of 80/4.5 micrograms/inhalation twice daily), which improved lung function and was well tolerated.

COPD
In two 12-month studies, the effect on lung function and the rate of exacerbation (defined as courses of oral steroids and/or course of antibiotics and/or hospitalisations) in patients with severe COPD was evaluated. Median FEV1 at inclusion in the trials was 36% of predicted normal. The mean number of exacerbations per year (as defined above) was significantly reduced with Symbicort as compared with treatment with formoterol alone or placebo (mean rate 1.4 compared with 1.8-1.9 in the placebo/formoterol group). The mean number of days on oral corticosteroids/patient during the 12 months was slightly reduced in the Symbicort group (7-8 days/patient/year compared with 11-12 and 9-12 days in the placebo and formoterol groups, respectively). For changes in lung-function parameters, such as FEV1, Symbicort was not superior to treatment with formoterol alone.

Pharmacokinetic properties
Absorption
Symbicort Turbuhaler and the corresponding mono-products have been shown to be bioequivalent with
regard to systemic exposure of budesonide and formoterol. In spite of this, a small increase in cortisol suppression was seen after administration of Symbicort Turbuhaler compared to the monoproduc-cts. The difference is considered not to have an impact on clinical safety.

There was no evidence of pharmacokinetic interac-
tions between budesonide and formoterol.

Pharmacokinetic parameters for the respective sub-
stances were comparable after the administration of
budesonide and formoterol as monoproduc-cts or as
Symbicort Turbuhaler. For budesonide, AUC was
slightly higher, rate of absorption more rapid and
maximal plasma concentration higher after adminis-
tration of the fixed combination. For formoterol, max-
imal plasma concentration was similar after adminis-
tration of the fixed combination. Inhaled budesonide
is rapidly absorbed and the maximum plasma con-
centration is reached within 30 minutes after inhala-
tion. In studies, mean lung deposition of budesonide
after inhalation via Turbuhaler ranged from 32 to
44% of the delivered dose. The systemic bioavail-
ability is approximately 49% of the delivered dose.

Inhaled formoterol is rapidly absorbed and the
maximum plasma concentration is reached within
10 minutes after inhalation. In studies the mean
lung deposition of formoterol after inhalation via
Turbuhaler ranged from 28-49% of the delivered
dose. The systemic bioavailability is about 61% of
the delivered dose.

Distribution and metabolism

Plasma protein binding is approximately 50% for
formoterol and 90% for budesonide. Volume of dis-
tribution is about 4 L/kg for formoterol and 3 L/kg for
budesonide. Formoterol is inactivated via conjuga-
tion reactions (active O-demethylated and deforma-
ylated metabolites are formed, but they are seen
mainly as inactivated conjugates). Budesonide
undergoes an extensive degree (approx. 90%) of biotransformation on first passage through the liver
to metabolites of low glucocorticosteroid activity.
The glucocorticosteroid activity of the major metab-
olites, 6-beta-hydroxy-budesonide and 16-alfa-
hydroxy-prednisolone, is less than 1% of that of
budesonide. There are no indications of any meta-
bolic interactions or any displacement reactions
between formoterol and budesonide.

Elimination

The major part of a dose of formoterol is trans-
formed by liver metabolism followed by renal elimi-
nation. After inhalation, 8-13% of the delivered dose
of formoterol is excreted unmetabolised in the urine.
Formoterol has a high systemic clearance (approxi-
mately 1.4 L/min) and the terminal elimination half-
life averages 17 hours.

Budesonide is eliminated via metabolism mainly
catalysed by the enzyme CYP3A4. The metabo-
lites of budesonide are eliminated in urine as such
or in conjugated form. Only negligible amounts of
unchanged budesonide have been detected in the
urine. Budesonide has a high systemic clearance
(approximately 1.2 L/min) and the plasma elimina-
tion half-life after i.v. dosing averages 4 hours.

The pharmacokinetics of budesonide or formot-
erol in patients with renal failure is unknown. The
exposure of budesonide and formoterol may be
increased in patients with liver disease.

Preclinical safety data

The toxicity observed in animal studies with budes-
onide and formoterol, given in combination or sep-
arately, were effects associated with exaggerated
pharmacological activity.

In animal reproduction studies, corticosteroids such
as budesonide have been shown to induce mal-
formations (cleft palate, skeletal malformations).
However, these animal experimental results do not
seem to be relevant in humans at the recommended
doses. Animal reproduction studies with formoterol
have shown a somewhat reduced fertility in male
rats at high systemic exposure and implantation
losses as well as decreased early postnatal surviv-
al and birth weight at considerably higher systemic
exposure than those reached during clinical use.
However, these animal experimental results do not
seem to be relevant in humans.

List of excipients

Lactose monohydrate (which contains milk proteins).

Incompatibilities

Not applicable.
INSTRUCTIONS FOR USE/HANDLING

Please read the complete instructions carefully before you start to take your medication. Turbuhaler is a multidose inhaler from which very small amounts of powder are administered (Fig. 1). When you breathe in through Turbuhaler the powder is delivered to your lungs. It is therefore important that you inhale forcefully and deeply through the mouthpiece.

How to prepare a new inhaler for use

Before using Turbuhaler for the first time you need to prepare the inhaler for use.

1. Unscrew and lift off the cover. A rattling sound is heard when you unscrew the cover.
2. Hold the inhaler upright with the red grip downwards (Fig. 2). Do not hold the mouthpiece when you turn the grip. Turn the grip as far as it will go in one direction and then back again as far as it will go. It does not matter which way you turn first. During this procedure you will hear a click. Perform this procedure twice.

The inhaler is now ready for use, and you should not repeat this procedure again. To take a dose, please continue according to the instructions below.

How to use Symbicort Turbuhaler

To administer one dose, simply follow the instructions below.

1. Unscrew and lift off the cover. A rattling sound is heard when you unscrew the cover.
2. Hold the inhaler upright with the red grip downwards (Fig. 2). Do not hold the mouthpiece when you turn the grip. To load the inhaler with a dose turn the grip as far as it will go in one direction, and then back again as far as it will go. It does not matter which way you turn first. During this procedure you will hear a click.
3. Breathe out. Do not breathe out through the mouthpiece.
4. Place the mouthpiece gently between your teeth, close your lips and inhale forcefully and deeply through your mouth (Fig. 3). Do not chew or bite on the mouthpiece.
5. Remove the inhaler from your mouth, before breathing out.
6. If more than one dose has been prescribed, repeat steps 2-5.
7. Replace the cover by screwing it back on tightly.
8. Rinse your mouth out with water. Do not swallow.

NOTE!

Do not try to remove the mouthpiece since it is fixed to the inhaler. The mouthpiece can be rotated, but do not twist it unnecessarily.

As the amount of the powder dispensed is very small, you may not be able to taste it after inhalation. However, you can still be confident that you have inhaled the dose if you have followed the instructions. If you by mistake perform the loading procedure more than once before taking your dose, you will still only receive one dose. The dose indicator will, however, register all the loaded doses.

The sound heard if you shake the inhaler is not produced by the medication but by a drying agent.

How will I know when to replace the inhaler?

The dose indicator (Fig. 4) tells you approximately how many doses are left in the inhaler, starting with either 60 or 120 when full.

The indicator is marked in intervals of 10 doses. Therefore it does not show the loading of each individual dose.

You should be reassured that Turbuhaler delivers the dose even if you may not notice a movement in the dose indicator.

For the last 10 doses, the background of the indicator is red. When the zero reaches the middle of the window (Fig. 5), it is time for you to discard the inhaler.

Please note that even when the dose indicator registers zero, it is still possible to turn the grip.
However, the indicator stops moving and the zero remains in the window.

Cleaning
Wipe the outside of the mouthpiece regularly (once a week) with a dry tissue. Do not use water or liquids when you clean the mouthpiece.

Disposal
Always be sure to dispose of your used Turbuhaler responsibly/in the recommended way, since some of the medicine will remain inside it. Ask you pharmacist for advice.